Opportunity Through Data Textbook
  • Opportunity Through Data Textbook
  • Introduction
    • What is Data Science?
    • Introduction to Data Science: Exploratory Musical Analysis
  • Module 1
    • Introduction to Programming
      • The Command Line
      • Installing Programs
      • Python and the Command Line
      • Jupyter Notebook
    • Introduction to Python
      • Building Blocks of Python - Data Types and Variables
      • Functions
      • Formatting and Syntax
    • Math Review
      • Variables and Functions
      • Intro to Graphs
  • Module 2
    • Data Structures
      • Lists
      • Dictionaries
      • Tables
    • Programming Logic
      • Loops
      • Logical Operators
      • Conditionality
  • Module 3
    • Introduction to Probability
      • Probability and Sampling
    • Introduction to Statistics
      • Mean & Variance
      • Causality & Randomness
  • Module 4
    • Packages
    • Intro to NumPy
      • NumPy (continued)
  • Module 5
    • Introduction to Pandas
      • Introduction to Dataframes
      • Groupby and Join
    • Working with Data
    • Data Visualization
      • Matplotlib
      • Introduction to Data Visualization
  • Appendix
    • Table Utilities
    • Area of More Complicated Shapes
    • Introduction to Counting
    • Slope and Distance
    • Short Circuiting
    • Linear Regression
    • Glossary
  • Extension: Classification
    • Classification
    • Test Sets and Training Sets
    • Nearest Neighbors
  • Extension: Introduction to SQL
    • Introduction to SQL
    • Table Operations
      • Tables and Queries
      • Joins
  • Extension: Central Limit Theorem
    • Overview
    • Probability Distributions
      • Bernoulli Distribution
      • Uniform Distribution (Discrete)
      • Random Variables, Expectation, Variance
      • Discrete and Continuous Distributions
      • Uniform Distribution (Continuous)
      • Normal Distribution
    • Central Limit Theorem in Action
    • Confidence Intervals
  • Extension: Object-Oriented Programming
    • Object-Oriented Programming
      • Classes
      • Instantiation
      • Dot Notation
      • Mutability
  • Extension: Introduction to Excel
    • Introduction to Excel
      • Terminology and Interface
      • Getting Started with Analysis and Charts
      • Basics of Manipulating Data
    • Additional Features in Excel
      • Macros
      • The Data Tab
      • Pivot Tables
Powered by GitBook
On this page
  • Area of Squares and Rectangles
  • Area of More Complicated Figures
  • Checkpoint

Was this helpful?

  1. Appendix

Area of More Complicated Shapes

PreviousTable UtilitiesNextIntroduction to Counting

Last updated 6 years ago

Was this helpful?

Area of Squares and Rectangles

Area is a measure of how much space there is inside a shape

area=heightâ‹…width\textrm{area} = \textrm{height} \cdot \textrm{width}area=heightâ‹…width

Area of More Complicated Figures

Suppose we want to calculate the area of this:

We can break the shape up into rectangles and find the area of each rectangle. The total area will be the sum of these individual rectangles.

Let's start by finding the area of the green rectangle. We have the height of the green rectangle (5 inches), but we do not have the width of the rectangle. However, we do know that the width of the green rectangle plus the width of the blue rectangle plus the width of the orange rectangle is 13 inches. We also know the area of the blue and orange rectangles. We can algebraically manipulate this information to find the width of the green rectangle:

width of green rectangle + width of blue rectangle + width of orange rectangle= 13 inches \textrm{width of green rectangle + width of blue rectangle + width of orange rectangle} \newline \textrm{= 13 inches } width of green rectangle + width of blue rectangle + width of orange rectangle= 13 inches \newlinewidth of green rectangle + 4 inches + 6 inches = 13 inches width of green rectangle + 10 inches = 13 incheswidth of green rectangle = 3 inches\textrm{width of green rectangle + 4 inches + 6 inches = 13 inches } \newline \textrm{width of green rectangle + 10 inches = 13 inches} \newline \textrm{width of green rectangle = 3 inches} width of green rectangle + 4 inches + 6 inches = 13 inches width of green rectangle + 10 inches = 13 incheswidth of green rectangle = 3 inches

Since we now know the height and width of the green rectangle we can find its area.

area=height⋅width=5 in.⋅3 in.=15 in.2\textrm{area} = \textrm{height} \cdot \textrm{width} = 5 \textrm{ in.} \cdot 3 \textrm{ in.} = 15\textrm{ in.}^2area=height⋅width=5 in.⋅3 in.=15 in.2

For the blue rectangle, we already know the width. We can find the height by adding up the lengths we are already given:

So the height of the blue rectangle is 9 inches. Using the area formula the area is:

area=height⋅width=9 in.⋅34 in.=36 in.2\textrm{area} = \textrm{height} \cdot \textrm{width} = 9 \textrm{ in.} \cdot 34\textrm{ in.} = 36\textrm{ in.}^2area=height⋅width=9 in.⋅34 in.=36 in.2

Finally, we are given the height and width of the orange rectangle. Its area is:

area=height⋅width=1 in.⋅6 in.=6 in.2\textrm{area} = \textrm{height} \cdot \textrm{width} = 1 \textrm{ in.} \cdot 6 \textrm{ in.} = 6\textrm{ in.}^2area=height⋅width=1 in.⋅6 in.=6 in.2

To find the total area of the figure we add up the area of each of the individual rectangles.

area of green rectangle + area of blue rectangle + area of orange rectangle = total area15 in.2+36 in.2+6 in.2=57 in.2\textrm{area of green rectangle + area of blue rectangle + area of orange rectangle = total area} \newline 15 \textrm{ in.}^2 + 36 \textrm{ in.}^2 + 6 \textrm{ in.}^2 = 57 \textrm{ in.}^2area of green rectangle + area of blue rectangle + area of orange rectangle = total area15 in.2+36 in.2+6 in.2=57 in.2

The total area is 57 in.2\textrm{in.}^2in.2 Note that we could have divided the original figure differently.

Try finding the area of the rectangles in this figure and confirming that you do get the same area as we found before.

Checkpoint

  1. Find the area of the following figure:

2. Find the area of the following figure

Remember, length must be a positive quantity.